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TITLEA LES model adapted to Lagrangian stochastic model
RESUME
Dans ces travaux, nous développons un nouveau modèle pour simuler la dynamique de particules proche de la paroi dansdes écoulements turbulents. La méthode retenue est fondée sur une approche hybride couplant (1) une simulation desgrandes échelles LES (en résolvant une équation de transport sur les moments et en modélisant les petites échelles de laturbulence) et (2) un suivi lagrangien stochastique des positions et vitesses de particules en suspension. Un tel modèlenécessite l’usage de schémas numériques stables et de modèles cohérents entre la phase fluide et la phase dispersée.Ces enjeux sont illustrés sur des cas pratiques (une turbulence homogène isotrope et un canal plan).
ABSTRACT
In this work, we develop a new model to simulate the dynamics of particles near walls in turbulent flows. The retainedmethod is based on a hybrid approach combining: (1) large-eddy simulations (LES), which solve a transport equation onmoments and model small-scale turbulence, and (2) a stochastic Lagrangian tracking of the positions & velocities of sus-pended particles. Such a model requires the use of stable numerical schemes as well as consistent models between thefluid and the dispersed phase. This is illustrated in practical cases (homogeneous isotropic turbulence and channel flow).

MOTS-CLÉS : Simulation aux grandes échelles, Modèle lagrangien stochastique, méthode de densité filtrée /KEYWORDS: Large Eddy Simulation, Lagrangian stochastic model, FDF method

1. CONTEXTE ET OBJECTIFS
Pour assurer la santé des ouvriers pouvant être exposés à des particules nocives (e.g. poussières contami-nées déposées sur des surfaces), il est important de pouvoir prédire avec précision le taux de resuspensionde ces particules déposées. Pour répondre à ces enjeux, nous développons un modèle pour simuler un fluideturbulent couplé à un modèle pour le transport, le dépôt et la resuspension de particules. L’objectif de cestravaux est de développer un modèle hybride entre une approche par champ pour le fluide porteur et uneapproche trajectorielle pour le suivi de chacun des objets formant la phase dispersée. Les enjeux sont mul-tiples : (a) le modèle du champ porteur doit assurer une bonne modélisation de la turbulence proche de laparoi, (b) tout en étant consistant avec le modèle de transport des particules.
2. MODÈLE HYBRIDE LES / LAGRANGIEN STOCHASTIQUE

2.1. Filtrage LES des équations de Navier-Stokes
Ces travaux s’inscrivent dans un cadre de modélisation hybride de transport/dispersion de particules via uneapproche lagrangienne stochastique couplée à un calcul du champ porteur. Ce dernier est résolu via uneapproche de simulation des grandes échelles (Large Eddy Simulation, LES), qui consiste à ne résoudre queles grandes échelles turbulentes, en modélisant les plus petites échelles qui sont responsables de la majeurepartie de dissipation de la turbulence. Cette approche repose sur la théorie de Kolmogorov selon laquellel’énergie se transmet des grandes structures tourbillonnaires aux plus petites (Pope, 2000).On définit un filtre spatial, tel que 𝒖 = 𝒖 + 𝒖’, où 𝒖 est la vitesse filtrée et 𝒖’ la fluctuation de la vitesse auxéchelles plus petites que la taille de ce filtre. En appliquant ce filtre aux équations de Navier-Stokes, nousobtenons les équations de Navier-Stokes filtrées suivantes :

𝜕𝜌𝒖
𝜕𝑡 + 𝐝𝐢𝐯 𝜌 𝒖 ⊗ 𝒖 = − 𝛁𝑝 + 𝐝𝐢𝐯 𝝉𝝂 −  𝜌 𝒖′ ⊗ 𝒖′

𝒅𝒊𝒗 𝜌𝒖 =  𝟎
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où 𝝉𝝂 =  − 𝜌𝜈 𝜵𝒖 + 𝜵𝒖𝑇 est la contrainte visqueuse, 𝜈 la viscosité cinématique du fluide.
𝝉𝒔𝒈𝒔  =  −  𝜌 𝒖′ ⊗ 𝒖′ est la contrainte de sous-maille. Ce terme nécessite une fermeture. On peut établir defaçon formelle son équation de transport, non fermée, en définissant le tenseur de Reynolds de sous maille𝑹 = 𝒖′ ⊗ 𝒖′ . On obtient alors l’équation suivante :𝜕𝑹𝜕𝑡 +  𝒖∙𝜵 𝑹  + 𝜵 𝒖∙𝑹 + 𝜵 𝒖 𝑇 ∙𝑹 =  − 𝒅𝒊𝒗 𝒖′ ⊗ 𝒖′ ⊗ 𝒖′ −  (𝒖′ ⊗ 𝜵𝒑′ +  𝜵𝒑′ ⊗ 𝒖′) −  𝒖′ ⊗ 𝒅�𝒗(𝜈 𝜵𝒖 + 𝜵𝒖𝑇 ) (1)
Les termes du membre de droite requièrent des lois de fermeture (qui seront détaillés dans la section 2.3 surla cohérence entre le modèle pour la phase fluide et le modèle pour la phase dispersée).

2.2. Modèle lagrangien stochastique de forme générale
Pour la modélisation du transport des particules, nous utilisons une approche lagrangienne stochastique detype General Langevin Model (GLM) sur la position de la particule 𝒙𝑝, la vitesse de la particule 𝒖𝑝 et la vitessedu fluide vue par la particule 𝒖𝑠 (Minier et al, 2025).

d𝒙𝒑 = 𝒖𝒑  d𝑡
d𝒖𝒑 =  1𝜏𝑝 𝒖𝒔 − 𝒖𝒑  d𝑡 +  𝒈 d𝑡 
d𝒖𝐬  =  − 1𝜌  𝛁𝑝 d𝑡 −  𝑮 𝒖 −  𝒖𝒔 d𝑡 +  𝐶0  𝜀𝑠𝑔𝑠  d𝑾𝒕

Dans ces équations, la vitesse 𝒖 et la pression 𝑝 sont obtenues avec le calcul LES sur la phase fluide. Leseffets de la turbulence à petite échelle (celle filtrée par la LES) sont modélisés par les termes stochastiques,ici sous forme d’un bruit blanc (où d𝑾𝒕 est l’incrément d’un processus de Wiener). 𝑮 est le tenseur de relaxa-tion du modèle, 𝐶0 est une constante et 𝜀𝑠𝑔𝑠 est la dissipation de sous-maille (les détails sur ce tenseur sontdonnés dans la section 2.3 sur la cohérence entre la phase fluide et la phase dispersée).
2.3. Cohérence avec la fermeture du second ordre de la LES

En notant ∙ l’opérateur de moyenne statistique, on définit un tenseur de Reynolds au sens des moyennesstatistiques 𝑅𝑖𝑗 = 𝑢𝑖′ 𝑢𝑗′ . Nous pouvons obtenir, dans le passage à la limite des particules fluides, une nou-velle équation de transport sur ce 𝑅𝑖𝑗 (Pope, 1994 et Minier, 2025) :
𝜕𝑹
𝜕𝑡 + 𝒖∙𝜵 𝑹 + 𝜵 𝒖∙𝑹 + 𝜵 𝒖 𝑇 ∙𝑹 = − 𝒅𝒊𝒗(𝒖′ ⊗ 𝒖′ ⊗ 𝒖′) + 𝑮𝑹 + 𝑹𝑮𝑻 + 𝐶0𝜀𝑠𝑔𝑠𝑰𝟑 (2)
Afin d’assurer une cohérence de l’équation (2) avec l’équation de transport (1), comme présenté dans (Pope,1994), un modèle de Langevin simple (SLM) correspond au modèle de Rotta (Rotta, 1951). Dans ce cas, letenseur de relaxation du modèle SLM s’écrit :𝑮 = − 1

2 + 3
4 𝐶0 𝜀𝑠𝑔𝑠

𝑘  𝑰𝟑 (3)
À noter que les corrélations triples ne nécessitent pas de modélisation additionnelle ici, alors que le modèlede Shir (Shir, 1973) est retenu dans (1).Ce modèle est intégré numériquement en utilisant un schéma de prédiction-correction décalé en temps detype Cranck-Nicholson tel que présenté dans (Amino, 2022). Pour l’intégration spatiale, nous nous sommesappuyés sur le travaux de (Ferrand, 2023) en utilisant un schéma de type Rusanov qui utilise l’hyperbolicitédu système d’équations pour résoudre des problèmes de Riemann aux interfaces.
3. APPLICATIONS
Les applications choisies ici illustrent l’importance d’avoir des approches cohérentes entre la simulation duchamp fluide et le suivi des trajectoires des particules.

3.1. Turbulence isotrope décroissante (DIT)
Afin de valider notre approche, nous la testons d’abord sur un cas de turbulence homogène isotrope. Ce casde validation met en avant la capacité du modèle à bien reproduire la cascade de turbulence des grandeséchelles aux plus petites. Comme dans l’expérience de (Kang et al. 2006), nous imposons en 𝑥 = 0 une tur-bulence liée à la présence d’une grille (ici une vitesse moyenne 𝑈0 = 12 𝑚/𝑠) et mesurons en aval la décrois-sance du niveau de turbulence à différentes distances 𝑥, exprimées en fonction de la taille de la grille 𝑀 =0.152 𝑚 (voir aussi la Figure 1). Ces simulations sont effectuées dans le référentiel du champ moyen sur undomaine tri-periodique cubique de 128 mailles par côté, en regardant à différents instants 𝑡 = 𝑥 𝑈0.
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Figure 1 : Description du canal de turbulence homogène isotrope.

Figure 2 : Résultat de simulation du champ porteur avec la vitesse instantanée le long d’une coupe à 𝑥 =48𝑀 (à gauche) et le spectre d’énergie à 𝑥 = 48𝑀 comparé à des mesures expérimentales et à d’autres mo-dèles LES (à droite).
La Figure 2 (à gauche) donne un exemple de l’écoulement instantané selon une coupe verticale (ici à 𝑥 =48𝑀), qui donne une idée des structures turbulentes présentes dans l’écoulement. L’analyse des spectres derépartition d’énergie en fonction des échelles (Figure 2 à droite) illustre plusieurs points : (a) l’importanced’avoir un schéma numérique stable (comparaison entre le schéma de type Rusanov, courbe bleue marine,et un schéma standard, courbe orange en pointillée) qui dissipe les petites échelles ; (b) le modèle donne desrésultats comparables à ceux obtenus par filtrage des données expérimentales ou via des LES classiques(avec les modèles de Smagorinsky ou de Germano).

3.2. Écoulement dans un canal plan
Le second cas de validation est un écoulement turbulent dans un canal plan, dans lequel on initialise la tur-bulence à un niveau donné (𝑅𝑒𝜏 = 𝐿𝑢𝜏𝜈 = 300, avec 𝐿 la demi hauteur du canal et 𝑢𝜏 la vitesse de frottement).
L’intérêt de ce second cas test est que l’écoulement turbulent est fortement anisotrope (avec la présence destructures turbulentes en proche paroi). Afin d’obtenir de bons profils des moments d’ordre un et deux (profilsde vitesse moyenne et du tenseur de Reynolds), le choix de la fermeture (algébrique) utilisée pour 𝜀𝑠𝑔𝑠 estprépondérant. Des calculs sont réalisés avec 𝜀𝑠𝑔𝑠 = 𝑘3/2/∆, avec différentes propositions pour la taille 𝛥.
4. CONCLUSION ET PERSPECTIVES
Ces travaux discutent de l’importance de développer des modèles cohérents entre la phase fluide et la phasedispersée et d’avoir recours à des schémas numériques stables et dissipatifs pour la LES avec fermeture dusecond-ordre. La prise en compte des termes visqueux dans l’approche Lagrangienne stochastique dans lecadre présenté dans cet article sera étudié prochainement.
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