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TITLE
A LES model adapted to Lagrangian stochastic model

RESUME

Dans ces travaux, nous développons un nouveau modéle pour simuler la dynamique de particules proche de la paroi dans
des écoulements turbulents. La méthode retenue est fondée sur une approche hybride couplant (1) une simulation des
grandes échelles LES (en résolvant une équation de transport sur les moments et en modélisant les petites échelles de la
turbulence) et (2) un suivi lagrangien stochastique des positions et vitesses de particules en suspension. Un tel modéle
nécessite 'usage de schémas numériques stables et de modéles cohérents entre la phase fluide et la phase dispersée.
Ces enjeux sont illustrés sur des cas pratiques (une turbulence homogene isotrope et un canal plan).

ABSTRACT

In this work, we develop a new model to simulate the dynamics of particles near walls in turbulent flows. The retained
method is based on a hybrid approach combining: (1) large-eddy simulations (LES), which solve a transport equation on
moments and model small-scale turbulence, and (2) a stochastic Lagrangian tracking of the positions & velocities of sus-
pended particles. Such a model requires the use of stable numerical schemes as well as consistent models between the
fluid and the dispersed phase. This is illustrated in practical cases (homogeneous isotropic turbulence and channel flow).

MOTS-CLES : Simulation aux grandes échelles, Modéle lagrangien stochastique, méthode de densité filtrée /
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1. CONTEXTE ET OBJECTIFS

Pour assurer la santé des ouvriers pouvant étre exposés a des particules nocives (e.g. poussiéres contami-
nées déposées sur des surfaces), il est important de pouvoir prédire avec précision le taux de resuspension
de ces particules déposées. Pour répondre a ces enjeux, nous développons un modeéle pour simuler un fluide
turbulent couplé a un modele pour le transport, le dépét et la resuspension de particules. L’objectif de ces
travaux est de développer un modéle hybride entre une approche par champ pour le fluide porteur et une
approche trajectorielle pour le suivi de chacun des objets formant la phase dispersée. Les enjeux sont mul-
tiples : (a) le modéle du champ porteur doit assurer une bonne modélisation de la turbulence proche de la
paroi, (b) tout en étant consistant avec le modéle de transport des particules.

2. MODELE HYBRIDE LES / LAGRANGIEN STOCHASTIQUE
21. Filtrage LES des équations de Navier-Stokes

Ces travaux s’inscrivent dans un cadre de modélisation hybride de transport/dispersion de particules via une
approche lagrangienne stochastique couplée a un calcul du champ porteur. Ce dernier est résolu via une
approche de simulation des grandes échelles (Large Eddy Simulation, LES), qui consiste a ne résoudre que
les grandes échelles turbulentes, en modélisant les plus petites échelles qui sont responsables de la majeure
partie de dissipation de la turbulence. Cette approche repose sur la théorie de Kolmogorov selon laquelle
I'énergie se transmet des grandes structures tourbillonnaires aux plus petites (Pope, 2000).

On définit un filtre spatial, tel que u =u + u’, ou u est la vitesse filtrée et v’ la fluctuation de la vitesse aux
échelles plus petites que la taille de ce filtre. En appliquant ce filtre aux équations de Navier-Stokes, nous
obtenons les équations de Navier-Stokes filtrées suivantes :

ap—u+div(pﬁ ® u) =—Vf)+div(r,,— pu'®u')

at
div (pit) = 0
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out,= — pvg vu + VﬁT) est la contrainte visqueuse, v la viscosité cinématique du fluide.
Tsgs = — P u’ ® u' est la contrainte de sous-maille. Ce terme nécessite une fermeture. On peut établir de

fagon formelle son équation de transport, non fermée, en définissant le tenseur de Reynolds de sous maille
R =u' ® u’. On obtient alors I'équation suivante :

X+ @R +(VaR+(@DR) = —div(y' @u @u)- W RVp + 7p @u)— u' @ dw(v(va+va")) (1)
Les termes du membre de droite requiérent des lois de fermeture (qui seront détaillés dans la section 2.3 sur
la cohérence entre le modele pour la phase fluide et le modéle pour la phase dispersée).

2.2. Modeéle lagrangien stochastique de forme générale

Pour la modélisation du transport des particules, nous utilisons une approche lagrangienne stochastique de
type General Langevin Model (GLM) sur la position de la particule x,, la vitesse de la particule u,, et la vitesse

du fluide vue par la particule ug (Minier et al, 2025).

dxpzuzl, dt
du,, = T—(us—up) dt + gdt
P
dug = —EV[_)dt -G (ﬁ— us)dt + '\/CO €sgs dw,
p

Dans ces équations, la vitesse u et la pression p sont obtenues avec le calcul LES sur la phase fluide. Les
effets de la turbulence a petite échelle (celle filtrée par la LES) sont modélisés par les termes stochastiques,
ici sous forme d’un bruit blanc (ou dW, est I'incrément d’un processus de Wiener). G est le tenseur de relaxa-
tion du modéle, C, est une constante et ¢, ; est la dissipation de sous-maille (les détails sur ce tenseur sont
donnés dans la section 2.3 sur la cohérence entre la phase fluide et la phase dispersée).

2.3. Cohérence avec la fermeture du second ordre de la LES

En notant (-) 'opérateur de moyenne statistique, on définit un tenseur de Reynolds au sens des moyennes
statistiques R;; = (ui' u]-'). Nous pouvons obtenir, dans le passage a la limite des particules fluides, une nou-

velle équation de transport sur ce R;; (Pope, 1994 et Minier, 2025) :
oR _ — —T f T on T o T T
S t@R + (vuR+(@Vw)"R) =—diviu' @u @u) +(GR+ RG") + Coeyyl3 (2)

Afin d’assurer une cohérence de I'équation (2) avec I'équation de transport (1), comme présenté dans (Pope,
1994), un modéle de Langevin simple (SLM) correspond au modele de Rotta (Rotta, 1951). Dans ce cas, le
tenseur de relaxgation du modéle SLM s’écrit :

A noter que les corrélations triples ne nécessitent pas de modélisation additionnelle ici, alors que le modéle
de Shir (Shir, 1973) est retenu dans (1).

Ce modele est intégré numériquement en utilisant un schéma de prédiction-correction décalé en temps de
type Cranck-Nicholson tel que présenté dans (Amino, 2022). Pour l'intégration spatiale, nous nous sommes
appuyés sur le travaux de (Ferrand, 2023) en utilisant un schéma de type Rusanov qui utilise I'hyperbolicité
du systéme d’équations pour résoudre des problémes de Riemann aux interfaces.

3. APPLICATIONS

Les applications choisies ici illustrent 'importance d’avoir des approches cohérentes entre la simulation du
champ fluide et le suivi des trajectoires des particules.

3.1. Turbulence isotrope décroissante (DIT)

Afin de valider notre approche, nous la testons d’abord sur un cas de turbulence homogéne isotrope. Ce cas
de validation met en avant la capacité du modéle a bien reproduire la cascade de turbulence des grandes
échelles aux plus petites. Comme dans I'expérience de (Kang et al. 2006), nous imposons en x = 0 une tur-
bulence liée a la présence d'une grille (ici une vitesse moyenne U, = 12 m/s) et mesurons en aval la décrois-
sance du niveau de turbulence a différentes distances x, exprimées en fonction de la taille de la grille M =
0.152 m (voir aussi la Figure 1). Ces simulations sont effectuées dans le référentiel du champ moyen sur un
domaine tri-periodique cubique de 128 mailles par c6té, en regardant a différents instants t = x/U,.
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Figure 1 : Description du canal de turbulence homogéne isotrope.
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Figure 2 : Résultat de simulation du champ porteur avec la vitesse instantanée le long d’'une coupe a x =
48M (a gauche) et le spectre d’énergie a x = 48M comparé a des mesures expérimentales et a d’autres mo-
déles LES (a droite).

La Figure 2 (a gauche) donne un exemple de I'écoulement instantané selon une coupe verticale (ici a x =
48M), qui donne une idée des structures turbulentes présentes dans I'écoulement. L’analyse des spectres de
répartition d’énergie en fonction des échelles (Figure 2 a droite) illustre plusieurs points : (a) I'importance
d’avoir un schéma numérique stable (comparaison entre le schéma de type Rusanov, courbe bleue marine,
et un schéma standard, courbe orange en pointillée) qui dissipe les petites échelles ; (b) le modéle donne des
résultats comparables a ceux obtenus par filtrage des données expérimentales ou via des LES classiques
(avec les modéles de Smagorinsky ou de Germano).

3.2. Ecoulement dans un canal plan

Le second cas de validation est un écoulement turbulent dans un canal plan, dans lequel on initialise la tur-
N . . Lu . .

bulence a un niveau donné (Re, =T’ =300, avec L la demi hauteur du canal et u, la vitesse de frottement).

L’intérét de ce second cas test est que I'écoulement turbulent est fortement anisotrope (avec la présence de

structures turbulentes en proche paroi). Afin d’'obtenir de bons profils des moments d’ordre un et deux (profils
de vitesse moyenne et du tenseur de Reynolds), le choix de la fermeture (algebrique) utilisée pour &, est

prépondérant. Des calculs sont realisés avec &4, = k3/2 /A, avec différentes propositions pour la taille A.

4. CONCLUSION ET PERSPECTIVES

Ces travaux discutent de I'importance de développer des modéles cohérents entre la phase fluide et la phase
dispersée et d’avoir recours a des schémas numériques stables et dissipatifs pour la LES avec fermeture du

second-ordre. La prise en compte des termes visqueux dans I'approche Lagrangienne stochastique dans le
cadre présenté dans cet article sera étudié prochainement.
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