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TITLE
Artificial  intelligence  in  the  service  of  radioactive  aerosol  metrology:  estimation  of  airborne
radioactivity and uncertainty quantification

RESUME
Dans les installations nucléaires, la surveillance de la contamination aéroportée repose sur la mesure de l’activité des
aérosols collectés sur filtre par un moniteur. Or, la nature des particules rencontrées — taille, composition, morphologie,
concentration, … — influence profondément la réponse du moniteur. Ces instruments de surveillance, conçus pour des
conditions standardisées, peinent à prendre en compte les variations de bruit de fond dans des situations complexes,
telles que celles rencontrées sur des chantiers de démantèlement des installations nucléaires.

Nous  présentons  une  approche  novatrice  fondée sur  l’utilisation  d’un  réseau de  neurones  convolutionnel,  capable
d’estimer les résultats de comptage dû aux transuraniens, ainsi que l’incertitude associée. Cette méthode intègre la
variabilité des caractéristiques réelles des aérosols dans la mesure et améliore la fiabilité des systèmes de surveillance
atmosphérique.

ABSTRACT
In nuclear facilities, monitoring airborne contamination relies on measuring the activity of aerosols collected on a filter by
a monitor. However, the nature of the particles encountered — size, composition, morphology, concentration, etc. —
profoundly  influences  the  monitor's  response.  These monitoring  instruments,  designed  for  standardised  conditions,
struggle to take into account background noise variations in complex situations such as those encountered on nuclear
facilities decommissioning sites.

We present an innovative approach based on the use of  a convolutional  neural  network,  capable of estimating the
counting results due to transuranic elements, as well as the associated uncertainty. This method integrates the variability
of the actual characteristics of aerosols into the measurement and improves the reliability of atmospheric monitoring
systems.

MOTS-CLÉS : aérosols, radioactivité, métrologie, intelligence artificielle / KEYWORDS: aerosols, radioactivity, 
metrology, artificial intelligence 

1. CONTEXTE

Les  aérosols  constituent  le  vecteur  principal  de  la  contamination  radioactive  atmosphérique  dans  les
installations nucléaires. Afin de garantir la sécurité des travailleurs et la protection de l’environnement, des
moniteurs de la contamination atmosphériques (CAM : Continuous Air Monitor) sont déployés sur les sites
nucléaires afin d’effectuer en permanence la mesure de la radioactivité des aérosols présents dans l’air
ambiant. Ces moniteurs échantillonnent les aérosols de l’air ambiant sur un filtre, mesurent en continu et en
temps réel  les radiations émises depuis les aérosols présents sur  le filtre.  Des algorithmes spécifiques
(compilés par Justus (2021)) permettent l’analyse de ces mesures et l’alerte en cas de mesure positive. Ces
instruments sont testés et certifiés en conditions réelles de fonctionnement représentatives des conditions
normales d’une installation nucléaire (IEC 60761-1 et -2; Monsanglant-Louvet et al., 2012).

Toutefois,  dans  certain  sites  nucléaires  comme  les  chantiers  de  démantèlement,  des  variations  de
l’empoussièrement  causent  des dégradations significatives  des  mesures.  On note  ainsi  la  présence de
grosses particules allant jusqu’à 50 µm, par exemple des particules métalliques issues des découpes ou des
particules  siliceuses  issues  d’écroutages  de  béton.  Le  prélèvement  de  ces  particules  entraîne  des
distorsions de la mesure de la radioactivité. Le bruit de fond, principalement dû aux descendants du radon,
évolue et les algorithmes classiques d’interprétation statistique, compilés par  Justus (2021), ne sont pas
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capables de prendre en compte ces évolutions. Tout ceci se traduit in fine par de trop nombreuses fausses
alarmes (Dougniaux & Hoarau, 2023; Hoarau, 2020; Hoarau et al., 2022). 

Nous proposons donc de confier  cette  tâche d’analyse et  d’interprétation des mesures à un algorithme
d’apprentissage  statistique,  que  nous  démontrerons  plus  à  même  de  s’adapter  à  toutes  les  situations
atmosphériques pouvant être rencontrées sur les différents sites nucléaires. L’algorithme développé repose
sur une architecture de type CNN (réseau de neurones convolutifs) et a été étudié pour un objectif précis :
fournir  une mesure et  son incertitude associée de la valeur  de la contamination.  Et  ce dans toutes les
situations d’empoussièrement, particulièrement celles pour lesquelles les algorithmes standards sont pris en
défaut.

L’approche de classification binaire, et la décision de présence de contamination, par le réseau de neurones
ont été abordées précédemment (Roblin et al., 2025).

2. BASE DE DONNÉES

Dans le domaine de l’IA et de l’apprentissage supervisé, il est indispensable d’avoir à disposition une base
de données de qualité à partir de laquelle un apprentissage est possible. Nous avons à disposition une base
de données expérimentale constituée de 63 spectres en énergie, acquis en laboratoire sur le banc d’essais
ICARE (Ammerich, 1989), et dans des conditions atmosphériques maitrisées et variées (Hoarau, 2020). 

Afin d’étoffer drastiquement la base de données nécessaire à l’apprentissage d’un réseau de neurones, un
algorithme a été développé, basé sur ces spectres expérimentaux, les équations d’évolution de l’activité lors
d’un prélèvement sur filtre  (Islam & Haque, 1994) et les formes des spectres  (Pommé & Caro Marroyo,
2015). 

Plus de 200 000 spectres ont ainsi été générés, couvrant un large éventail de conditions : empoussièrement,
durée  d’échantillonnage,  niveau  de  radon,  distribution  de  tailles  d’aérosols,  activités  des  isotopes
transuraniens  (Pu-239,  Am-241,  U-238).  La  moitié  de  ces  spectres  ne  présentent  aucune  trace  de
radioactivité  issue  de  source  transuranienne,  l’autre  moitié  compte  jusqu’à  255  coups  issus  de
transuraniens.  Cela  correspond  à  une  contamination  continue  d’une  heure  à  une  activité  volumétrique
s’étendant  jusqu’à  2 Bq/m³.  Cette  base  semi-synthétique  reproduit  la  complexité  des  environnements
rencontrés sur sites.

3. MODÈLE

Afin d’améliorer l’interprétabilité du processus de décision, nous avons développé une approche en deux
temps,  séparant  la  mesure  de son  interprétation  et  la  décision.  Tout  d’abord,  la  prédiction  du  nombre
d’évènements des spectres liés aux radionucléides transuraniens (donnée de comptage) associée à une
estimation de l’incertitude de cette prédiction. La décision finale pourra ensuite être prise à partir de ces
estimations, basée sur une approche statistique traditionnelle. L’approche de classification binaire directe
par le réseau de neurones a été abordée précédemment (Roblin et al., 2025).

Une mesure nucléaire est fondée sur la statistique de Poisson. Alors la sortie du modèle de prédiction, noté
y,  doit  être le paramètre de cette distribution. Cependant, cette distribution ne permet pas de modéliser
l’incertitude de manière satisfaisante pour nos données entièrement hétéroscédastiques : la variance de y
dépend non seulement de y lui-même, mais également de variables indépendantes telles que l’activité en
radon et ses descendants, et l’empoussièrement du filtre. Le modèle de prédiction doit donc estimer y avec
une loi Double-Poisson (Efron, 1986), intégrant le traditionnel paramètre de moyenne λ, correspondant à la
prédiction y, ainsi qu’un paramètre indépendant de dispersion noté Φ. Le modèle doit donc estimer ces deux
paramètres simultanément.

L’architecture du modèle d’apprentissage profond retenue est basée sur cinq blocs de convolutions 1D,
adaptés à l’analyse de données spectrales, suivies de couches ReLU standards, pour un total de 1 250 000
paramètres  à  optimiser.  La  couche  de  sortie  comporte  deux  neurones,  pour  l’estimation  des  deux
paramètres de la loi  Double-Poisson. La  Figure 1 illustre l’architecture du modèle.  La fonction de perte
choisie pour entraîner ce réseau est, naturellement, la log-vraisemblance négative de la distribution Double-
Poisson.  Le  processus  d’optimisation  a  été  amélioré  afin  d’atténuer  les  problèmes  courants  lors  de
l’entraînement de ce type de modèles (Seitzer et al., 2021).
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Figure 1 – Illustration de l’architecture du CNN.

4. RÉSULTATS

La  Figure 2 compare les prédictions à la vérité, avec le bruit  de fond dans la région des transuraniens
représenté en couleur. Ce graphe est obtenu sur un échantillon de données de test, indépendantes des
données utilisées pour l’entraînement du modèle. On constate une erreur absolue moyenne de 7 coups sur
l’estimation des événements transuraniens. Le coefficient de détermination R2 est de 0,957.

Figure 2 – Comparaison des prédictions à la vérité.

Les  intervalles  de  confiance  à  95  %  estimés  par  le  modèle  via  la  distribution  Double-Poisson  sont
correctement calibrés. En effet, 94,5 % des comptages réels sur données test sont dans leur intervalle de
confiance estimé. Cela confirme la capacité du modèle à estimer correctement ses propres incertitudes.

Lorsqu’une heuristique d’alarme simple est appliquée (fondée sur la variance de la loi Double-Poisson), le
système atteint une sensibilité (proportion de vrais positifs détectés) de 78 % et une spécificité (proportion de
vrais négatifs correctement identifiés) de 99,97 %, contre 69 % et 65 % respectivement pour l’algorithme
classique (dit des 4-ROI). Le taux de faux positifs est donc drastiquement réduit, en particulier pour des
valeurs de bruit de fond élevées, comme l’illustre la Figure 3.

Ces  performances  traduisent  une  meilleure  compréhension  des  interactions  entre  aérosols  et  mesure
spectrométrique. Le modèle relie la physique du dépôt particulaire à la statistique de comptage, ouvrant la
voie à une métrologie des aérosols plus intelligente, fiable et traçable.

Figure 3 – Précision (spécificité) des algorithmes en fonction du bruit de fond.
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5. CONCLUSION

Ce travail démontre que l’intégration des modèles d’apprentissage profond dans la chaîne de mesure des
aérosols radioactifs permet de surmonter les limites des algorithmes classiques, notamment en conditions
atmosphériques complexes. En modélisant conjointement le paramètre de comptage et son incertitude via
une loi Double-Poisson, le modèle proposé offre une estimation robuste de la contamination transuranienne,
même en présence de particules grossières induisant des variations du bruit de fond. Les performances
obtenues –  spécificité  de  99,97  % –  confirment  une  réduction  drastique  des  fausses  alarmes,  tout  en
maintenant une détection fiable des contaminations.

Cette  avancée  est  particulièrement  pertinente  pour  les  chantiers  de  démantèlement,  où  les  conditions
opératoires dégradent la fiabilité des moniteurs classiques. Ces résultats pourraient inspirer des évolutions
dans les normes de surveillance (IEC 60761) et  encourager l’adoption de solutions intelligentes pour la
métrologie des aérosols radioactifs. 

Cette approche préfigure donc une nouvelle génération d’instruments intelligents, capables d’ajuster leur
réponse aux conditions atmosphériques réelles. Elle ouvre des perspectives vers une métrologie adaptative,
à  la  fois  physique,  numérique  et  prédictive,  qui  pourrait  transformer  durablement  la  surveillance  de  la
contamination aéroportée.
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